Prospects for New Rare-Earth Mines Outside of China

Roderick G. Eggert

Professor, Colorado School of Mines

Deputy Director, Critical Materials Institute

reggert@mines.edu

All-CMI Plenary Session Ames, September 9, 2014

Starting points

- What are the prospects for mine production outside of China?
- Mountain Pass, California; Mount Weld, Australia
 - In production, but with start-up challenges
- 300-400 reported exploration properties two years ago
 - What has become of them?
- Framework
 - Market environment
 - Project-specific factors

Indexed rare-earth oxide prices, FOB China

(6 January 2006 – 4 September 2014)

Oxide	January 2006	January 2010	Peak 2011	4 Sept 2014
Lanthanum	19	6	172	5
Cerium	15	4	158	5
Praseodymium	10	22	249	120
Neodymium	10	23	338	60
Samarium	3	5	129	6
Europium	220	480	5870	725
Gadolinium	NA	7	203	47
Terbium	320	350	4510	615
Dysprosium	50	117	2840	340
Yttrium	5	10	183	13

Oxide	January 2006	January 2010	Peak 2011	4 Sept 2014
Lanthanum	19	6	172	5
Cerium	15	4	158	5
Praseodymium	10	22	249	120
Neodymium	10	23	338	60
Samarium	3	5	129	6
Europium	220	480	5870	7 2 5
Gadolinium	NA	7	203	47
Terbium	320	350	4510	615
Dysprosium	50	117	2840	340
Yttrium	5	10	183	13

Oxide	January 2006	January 2010	Peak 2011	4 Sept 2014
Lanthanum	19	6	172	5
Cerium	15	4	158	5
Praseodymium	10	22	249	120
Neodymium	10	23	338	60
Samarium	3	5	129	6
Europium	220	480	5870	72 5
Gadolinium	NA	7	203	47
Terbium	320	350	4510	615
Dysprosium	50	117	2840	340
Yttrium	5	10	183	13

Oxide	January 2006	January 2010	Peak 2011	4 Sept 2014
Lanthanum	19	6	172	5
Cerium	15	4	158	5
Praseodymium	10	22	249	120
Neodymium	10	23	338	60
Samarium	3	5	129	6
Europium	220	480	5870	725
Gadolinium	NA	7	203	47
Terbium	320	350	4510	615
Dysprosium	50	117	2840	340
Yttrium	5	10	183	13

Market environment

- Prices
- Demand
 - Little if any growth since ~2011
 - Immediate and lagged 'demand destruction'
 - 'wait and see'
 - Magnets perhaps biggest potential growth market

	World	China	ROW	Magnets	Phosphors
2008	124	73	51	26	9
2009	86	60	26	22	6
2010	123	74	49	25	9
2011	110	75	35	23	9
2012	117	78	40	25	9
2013	115	78	38	29	7
2014f	124	81	42		
2015f	133	84	49		
2017f	153	93	60	42	7
2020f	190	115	75		

	World	China	ROW	Magnets	Phosphors
2008	124	73	51	26	9
2009	86	60	26	22	6
2010	123	74	49	25	9
2011	110	75	35	23	9
2012	117	78	40	25	9
2013	115	78	38	29	7
2014f	124	81	42		
2015f	133	84	49		
2017f	153	93	60	42	7
2020f	190	115	75		

	World	China	ROW	Magnets	Phosphors
2008	124	73	51	26	9
2009	86	60	26	22	6
2010	123	74	49	25	9
2011	110	75	35	23	9
2012	117	78	40	25	9
2013	115	78	38	29	7
2014f	124	81	42		
2015f	133	84	49		
2017f	153	93	60	42	7
2020f	190	115	75		

	World	China	ROW	Magnets	Phosphors
2008	124	73	51	26	9
2009	86	60	26	22	6
2010	123	74	49	25	9
2011	110	75	35	23	9
2012	117	78	40	25	9
2013	115	78	38	29	7
2014f	124	81	42		
2015f	133	84	49		
2017f	153	93	60	42	7
2020f	190	115	75		

	World	China	ROW	Magnets	Phosphors
2008	124	73	51	26	9
2009	86	60	26	22	6
2010	123	74	49	25	9
2011	110	75	35	23	9
2012	117	78	40	25	9
2013	115	78	38	29	7
2014f	124	81	42		
2015f	133	84	49		
2017f	153	93	60	42	7
2020f	190	115	75		

Source: Dudley Kingsnorth

f = forecast

	World	China	ROW	Magnets	Phosphors
2008	124	73	51	26	9
2009	86	60	26	22	6
2010	123	74	49	25	9
2011	110	75	35	23	9
2012	117	78	40	25	9
2013	115	78	38	29	7
2014f	124	81	42		
2015f	133	84	49		
2017f	153	93	60	42	7
2020f	190	115	75		

Market environment

- Prices
- Demand
- Supply
 - Consolidation & vertical integration (upstream) in China
 - WTO aftermath: likely narrowing of price gap, stricter production quotas
 - New mine production in USA & Australia, but China still dominates supply chain
 - Room for perhaps 5-6 mines by 2020

Market environment

- Prices
- Demand
- Supply
- Uncertainty dominates
 - 'chicken-and-egg' situation

Project-specific discussion

- TMR Advanced Rare-Earth Project Index (<u>www.techmetalsresearch.com</u>)
- Adamas Intelligence (<u>www.adamasintel.com</u>)

~50 projects with compliant resource estimates or beyond

TMR top 10: total REO (Mt)

- TANBREEZ, Greenland
- Niobec, Canada
- Kvanefjeld, Greenland
- Ashram Main, Canada
- Mrima Hill Main, Kenya

- Strange Lake Granite, Canada
- Montviel, Canada
- Serensen, Greenland
- Nechalacho Upper, Canada
- Mountain Pass, USA

Source: <u>www.techmetalsresearch.com</u>, update of July 21, 2014

TMR top 10: total REO (wt%)

- Steenkampskral, South **Africa**
- Mount Weld Duncan, **Australia**
- Mount Weld CLD, Australia

 Kangankunde, Malawi

- Mrima Hill High Grade, Kenya
- Araxá, Brazil

Mountain Pass, USA

- Ngualla, Tanzania
- Wigu Hill Twiga, Tanzania

Mrima Hill Main, Kenya

Source: www.techmetalsresearch.com, update of July 21, 2014

TMR top 10: in-situ total REO (US\$/tMR)

- Steenkampskral, South Africa
- Mount Weld CLD, Australia
- Mrima Hill High Grade, Kenya
- Mount Weld Duncan, Australia

- Mountain Pass, USA
- Ngualla, Tanzania
- Mirma Hill Main, Kenya
- Araxá, Brazil
- Kangankunde, Malawi
- Wigu Hill Twiga, Tanzania

Source: www.techmetalsresearch.com, update of July 21, 2014

TMR top 10: basket price (US\$/recoverable kg REO)

- Browns Range, Australia
- Lofdal, Namibia
- Hastings, Australia
- Kutessay II, Kyrgyzstan
- Bokan, USA

- Norra Kärr, Sweden
- Strange Lake Enriched, Canada
- Nechalacho Basal, Canada
- Round Top, USA
- Olserum, Sweden

Source: www.techmetalsresearch.com, update of July 21, 2014

Adamas top 10: exploration

- Browns Range, Australia
- Kangankunde, Malawi
- **Buckton South, Canada**
- Kutessay II, Kyrgyzstan

Clay-Howells, Canada

- La Paz, USA
- **Cummins Range, Australia**
- Lavergne-Springer, Canada
- Hoidas Lake (JV), Canada Lofdal, Namibia

www.adamasintel.com, update of June 4, 2014

Adamas top 10: development

- Aksu Diamas, Turkey
- Araxá, Brazil
- Ashram Main & MHREO, Canada
- Bear Lodge, USA
- Bokan Dotson Ridge, USA Foxtrot, Canada

- **Buckton Main, Canada**
- Charley Creek (JV), **Australia**
- DZP, Australia
- Eco Ridge, Canada

www.adamasintel.com, update of June 4, 2014

Confused?

- Rankings are great fun, informative, valuable for identifying & understanding key success characteristics
- But inevitably incomplete also must consider:
 - Mineralogy (process engineering, Th)
 - Location & infrastructure (partially captured by Adamas capital costs)
 - Co-production (partially captured in Adamas)
 - Political, social, regulatory considerations
 - The existence of a customer for specific products a project has demonstrated it can produce?

Confused?

- Rankings are great fun, informative, valuable for identifying & understanding key success characteristics
- But inevitably incomplete
- A key strategic dimension of the RE sector:
 'differentiation' rather than 'cost leadership'

Broader inferences & final thoughts

- Mountain Pass (USA) and Mount Weld (Australia) will overcome their technical challenges & enjoy some degree of success
 - Important for other projects in the short term
- What of the other '400'?
 - Most are or will be 'back on the shelf' until the next boom
 - Most require demand growth, reversal of demand destruction
 - All are affected by what happens in China, Bayan Obo
 - Perhaps 5-6 will come into production by 2020

What is under-appreciated?

- Lack of demand growth at present
- Continuing fragile supply chains
- Significant potential for increased primary production . . .
 that would be facilitated by:
 - Better basic geoscience
 - Enhanced process engineering

Questions?

Contact information:

Roderick G. Eggert

Division of Economics and Business

Colorado School of Mines

Golden, Colorado USA 80401

Phone: +1 303 273 3981

E-mail: reggert@mines.edu

Websites: econbus.mines.edu, cmi.ameslab.gov

TMR rare-earth list

- List includes
 - 57 resources (NI 43-101, JORC, SAMREC, etc.)
 - 51 properties
 - 49 companies
 - 16 countries
 - Last updated July 21, 2014

Adamas Intelligence

- Evaluation & ranking of REE projects
- Exploration-stage rankings (27 projects)
 - Tonnes TREO (40%)
 - Tonnes CREO & relative abundance of CREOs (30%)
 - Hypothetical value of TREO (20%)
 - Relative abundance of (TREO La/Ce) (10%)
 - 'Exploration' = compliant resource estimate only

Adamas (continued)

- Development-stage rankings (25 projects)
 - Gross profit from REO and REO equivalent over life of mine (40%)
 - Tonnes of CREO recovered over life of mine (20%)
 - Capital expense payback period (15%)
 - (Revenues from non-REOs/total cost) + (revenues from REOs/total cost) (10%)
 - Tonnes per year of less-desirable REOs produced (7.5%)
 - Project capital cost per tonne of REO & REO equivalent produced per year (7.5%)

